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Problem Statement

How to monltor illegal parking practlces at C|ty scale W|th I|m|ted human mterventlon?
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State of Current Practice

How is it done now?

=  Focus is on identification and deterrence!

= |dentification best practices

] (Semi) manual analysis of video feeds from traffic surveillance cameras
= Patrolling by enforcement agencies

= Deterrence procedures

Issue of violation tickets with monetary fines; towing; wheel clamping

Limitations of current practice?

=  Monitoring is (mostly) manual

=  Streaming visual data to the cloud has privacy implications

ey TEgEARCH &
7FNNOVAT|0N

Difficult to scale-up and maintain the monitoring system with problem size; and is costly
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Scope of Operation

Features

View the roadside parking scene using the rear camera of the
dashboard/windshield mounted smartphone

Locally process the video feed in real-time to identify no-parking signages and
vehicles parked in its vicinity

Match it with parking policies to detect the location of illegally parked vehicles

Send the status report to the cloud that can further notify various city agencies

Easy to Scale

= City taxi networks are a widespread mode of transport | Egde based system

Low in Cost and Deployment Complexity

= Makes use of off-the-shelf smartphones that are already present in taxis

= Precludesthe need for additional instrumentation, either in urban environment or on the vehicle

Real-time and Privacy Preserving

= Performs on-board analytics on the phone itself, without sending back raw video data to the cloud

= The status report is sent to the cloud, which consists of the location of the illegally parked vehicles

Automated

= On-time installation of the StreetHAWK app on the smartphone and granting it the correct system access privileges
is ALL that is needed from the user point of view. The rest of the workflow is automated.

Non-disruptive to the normal process 10




StreetHAWK: High-level Architecture
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System level Challenges

High-speed mobile vision with an inverted monitoring
architecture

“Zero” control over the set-up

Edge platforms are constrained (in comparison to the cloud infra)
Smartphone based edge system offer a shared working
environment | cannot get greedy about platform resources
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= Aim: Detect objects-of-interest (no-parking signboards | motorbikes | auto-rickshaws | cars)

= Challenges:
1. Small object detection
2. Lack of consistent pattern for visual detection (more applicable to developing countries)

. Irregularities in the deployment of no-parking signboards
. Non-standard manner of vehicle parking

3. Unique object identification
= Multiple detection of the same object across frames

4. Differentiate : moving vs. parked vehicle
= Recall: system uses a mobile setup | camera is moving | scene is moving
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Convolutional detection model : SSD meta-architecture with MobileNetV2 as the feature extractor

Bottleneck Residual (BR) Block Instance MobileNetV2
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Transfer Learning Point
= Approach

= Used a detection model pre-trained on the MS COCO dataset

= Limited object categories to 4!

= Derived a new model by using transfer learning and re-training with custom dataset collected under
a wide range of real-world constraints and environmental conditions (with data augmentation)

Overcomes object detection challenges 1 and 2!
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= Aim: Find the distance between the camera and the detected objects

= Challenges:

= Since the camera is moving, there is a need for an ultra-fast visual distance measurement technique

= Limited measurement range with a single camera system
= The single shot detection range is limited to 15m, while the field requirement is that of 100m
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= Approach:

= Used the pinhole principle to measure the distance between the camera and the detected objects
= Used a short-term historian to successively log the details of the detected objects 25
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= Aim: Find the absolute location of the detected objects

= Challenges:
= For real-time operation:
= |ocalization needs to be performed on the device itself
= |ocalization technique must be lightweight

location are changing

= Wait for at least 2 consecutive object detections

= |f <x> co-ordinate is changing, then add the Distance (camera->object) to x!
» |f <y>co-ordinate is changing, then add the Distance (camera->object) to y! Rt 2 Vit K1+ d1 1 Yid)

* If both <x and y> co-ordinates are changing, then add Distance (camera || (@~ B ) ------------- .
->object)/2 to both <x> and <y> i1

:E
>.‘§
*\—E
= Approach: 1
Find out if <x, y, or both x and y> co-ordinates of the camera ;
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StreetHAWK: Functional Flow
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Historian

Record (for EACH detected object):

(Time) of detection
Camera (location)

(Distance) between camera and detected object

Object (location)

(object location)
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=  Aim: remove erroneous object detections Moving vehicles are detected as PARKED

= Challenges: R
1. Unique object identification B &
= Multiple detection of the same object across frames

2. Differentiate : moving vs. parked vehicle
= Recall: system uses a mobile setup | camera is moving | scene is moving

=  Approach:
= Unique object identification

= Perform sequential clustering of object locations
= Calculate the distance between two consecutive object locations
= |f distance < 1m, then the object locations are clustered together as
belonging to the same detected object

= Differentiate between a parked and a moving vehicle
= |f the camera is moving, and as the camera gets closer to the

detected vehicle:

= |f the distance between the camera and the detected vehicle decreases,
then detected vehicle = PARKED
= For anything else, the detected vehicle is moving

28
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StreetHAWK: E

= We collected and manually labeled a dataset extracted from over 50 hours of citywide driving video
feeds that spanned over 4 months
= We performed on-the-road experiments that spanned close to 500 km
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PASCAL VOC Evaluation Benchmarks

recision—RecalI Curve @ 0.5 loU Average Precision vs. Object Class @ varying loUs
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MS COCO Evaluation Benchmarks

Method Category mAP, IoU : mAP, Area : mAR, maxDets ; mAR, Area :
(0.50-0.95) (0.50) (0.75) | (S) (M) (L) | (01) (10) (100) | (S) (M) (L)
MobileNetV1 + Faster RCNN | Embedded 0.17 0.41 010 | 001 017 o028 | 021 030 031 | 008 032 051
MobileNetVl + SSD300 Embedded 0.22 0.48 018 | 0.05 024 029 | 028 034 034 | 011 034 045
VGCNet + SSD300 | Non-Embedded | 0.23 0.41 023 | 005 023 o041 | 023 033 035 | 010 038 057

MobileNetV2 + SSD30@* | Embedded | 026 0.55 021 | 0.07 028 037|032 042 043 | 020 045 0.58




StreetHAWK: Ranging Performance

Static Ranging

Histogram of Ranging Error
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Ranging error under stationary condition,

where it is observed to be less than 4 m.
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Mobile Ranging

Distance Error (m), Angle :
(m)
059 — 209 20° —30° 30° — 60°
01 — 05 - - ) 2-3
05 — 10 — (-) 3-5 -
10 = 15 (-) 3-5 - -

Ranging error under mobile condition; where the
maximum error is observed to be less than 5m

across all cases.
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Example - | Example -1l CDF - False Positive Rate : Pre. vs. Post Filtering
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Representative scenarios where moving vehicles are CDF — Accuracy : Pre. vs. Post Filtering
i 1

mcorrgctly detected as parked, and removal of those errors o Pre_Filtering

post filtering. -n-Post Fnltermg

Cumulative Probability

Filtering techniques significantly decrease the false positive rate;
as a result of which, the end-to-end system accuracy increases by a
factor of two.
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StreetHAWK: On-the-road Trial
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=  With an end-to-end design and implementation of StreetHAWK for parking violation monitoring, we demonstrate the
feasibility of a COTS smartphone based edge system!

] combines a single camera visual sensing mode with edge-compatible machine learning and analytic models.

= We account for the edge platform constraints and propose lightweight methods for detecting parking violations and
measuring the violation span/density.

= We use a deep neural network (DNN) based convolution detection model, and address the model limitation of identifying small
objects in a wide variety of real-world conditions by extensive training and parameter tuning.

= We use the visual ranging capability of a single camera phone system to measure the violation span, but enhance it with
a short-term historian and GPS to extend the system range from 15m to the prescribed 100 m.

= At the overall system level, we make use of the mobility of the camera unit and multi-modal sensing clues to filter out
erroneous violation instances.

= System performance
= three times better accuracy in detecting small sized objects than other state-of-the-art embedded models
= worst case ranging error of less than 5 m
= operates at a speed of 5 frames per second (FPS) on typical mid-range Android smartphones
= jdentifies, on an average, 80% of parking violations compared to a perfect record of manual approaches
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